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A B S T R A C T

Most existing studies assume that the network topology is already known when designing intervention
strategies, which is difficult to achieve in practice. This paper focuses on network intervention with sampling
information and assumes that the nodes are obtained by three typical graph sampling algorithms. The
characteristics of sampling nodes’ degrees and its influence on the design of intervention strategies are
analyzed. Moreover, we propose a cutoff degree-based method for utilizing sampling information. Experiments
in synthetic and real networks show that our method could effectively disintegrate networks by estimating
networks’ mean degrees with sampling information. The results depend on the degree preference of sampling
algorithms and the accuracy of the average degree estimation. For sampling algorithms with high degree
preference, the intervention effect of sampling partial data could approach that of complete data when selecting
the appropriate cutoff degree value.
1. Introduction

Networks can effectively represent the structure and dynamics of
experiential systems through interacting entities. Typical examples in-
clude the power grid, the Internet, social networks and biological
networks [1–3]. Structural connectivity can greatly influence the func-
tion and dynamic of such networks, so many researchers focus on the
robustness of networks in maintaining connectivity against random fail-
ures and targeted attacks [4,5]. Meanwhile, much attention is directed
to another side of the problem to identify critical nodes (or links)
that disproportionately influence networks [6]. Targeting these nodes
for intervention can effectively disintegrate the network functions and
prevent the epidemic dissemination of infectious diseases or malicious
rumors [7–9]. Similar studies have also used terms such as network at-
tack [4], network immunization [10], optimal percolation [6], network
dismantling [11] and network disintegration [12].

Most studies of network intervention assume that information about
the global structures of networks is known. In the beginning, re-
searchers attack the nodes according to their importance as defined
by structural centrality and improve the attack effect by recalculating
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the centrality scores of nodes during the removal process [13]. Fur-
thermore, many heuristic algorithms have been proposed to identify
the minimal set of nodes whose removal would disintegrate the net-
work into many separate pieces [6,14]. Recently, some combinatorial
optimization-based and machine learning-based algorithms were also
introduced to develop effective network intervention strategies [15–
17].

Although the above network intervention strategies are efficient, the
unavoidable problem is that we hardly obtain complete network infor-
mation. Therefore, many studies pay attention to network intervention
under incomplete information in different ways [18]. According to
the assumptions about network information, the research could be
divided into incomplete global information-based methods and lo-
cal information-based methods. The formers always occur in network
attacks or robustness problems [18,19], and the latters are usually
represented in network immunization or vaccination [20].

Incomplete global information research started from the robustness
analysis of centrality measures with imperfect data [21]. The generat-
ing function methods were introduced to study the intentional attack
under incomplete information [18,22], the optimal attack strategies
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by adjusting the attack proportions of different areas [23] and the
robustness of subgraph obtained from uniform and nonuniform random
sampling [19]. Moreover, considering random link missing, the link
prediction methods are introduced to improve the network disintegra-
tion effect [24]. It is worth noting that these studies mainly consider
random loss of network data and pay less attention to the ways and
causes of data loss.

Local information-based methods focus on developing efficient im-
munization or vaccination strategies when each removal is based on
local topology or neighbor information. Typical methods include ac-
quaintance immunization and its variants, which immunize the random
neighbors of randomly selected nodes [25]. The respondent-driven
sampling method was also introduced to network immunization and
specially adapted to hidden populations [26]. Moreover, researchers
focused on reducing the cost of collecting information and improving
the effectiveness of interventions by selectively data collection and vac-
cination [20,27]. Recently, a percolation framework was proposed to
analyze of immunization under incomplete information where a group
of nodes is observed at a time and the node with the highest degree
is immunized [28], which was also expanded to other different attack
models and conditions [29,30]. Although these models and algorithms
are theoretically feasible, they ignore the global cost of sampling local
information. In other words, in some algorithms, the total number of
sampling nodes approaches or even exceeds the total number of nodes.

The acquisition of network data could be regarded as a sampling
process from the underlying real network [31,32]. Due to limited
sampling resources and individuals’ accessibility, it is difficult to obtain
all information on nodes and links. A sampling network is gener-
ally the subgraph consisting of the subsets of the nodes and links
in the original network [33–35]. The related issue focuses on the
property preservation and estimation of the actual network through
different sampling algorithms [36,37]. Relevant conclusions show that
the characteristics of incomplete network topology are closely related
to sampling algorithms [38]. So the sampling information obtained
from different sampling algorithms will largely influence the interven-
tion strategies. At the same time, how to use sample information to
improve the effectiveness of network intervention is also an important
issue. Therefore, focusing on the above two aspects, we study effective
network intervention with sampling information in this paper. On the
one hand, we investigate the influence of network data obtained by
different sampling algorithms on the intervention effects. On the other
hand, we design effective intervention methods to maximize the use of
sampling information.

The paper is organized as follows. We define the above prob-
lem and introduce three classical sampling algorithms for research
in Section 2. The characteristics of the sampling algorithms and the
available auxiliary information are also analyzed. In Section 3, an
effective cutoff-degree based method for network intervention based on
global mean estimation is presented. Experiments in artificial and real
networks examine the selection of cutoff degree value and the method’s
effectiveness. At last, the article is summarized and discussed.

2. Model and materials

Let us denote an unweighted and undirected network 𝐺 = ⟨𝑉 ,𝐸⟩.
= {𝑣1, 𝑣2,… , 𝑣𝑛} is the set of nodes and 𝐸 ⊆ {(𝑣𝑖, 𝑣𝑗 )|𝑣𝑖 ∈ 𝑉 , 𝑣𝑗 ∈
, 𝑖 ≠ 𝑗} is the set of edges between them, where (𝑣𝑖, 𝑣𝑗 ) is an unordered
air. 𝑁 = |𝑉 | and 𝑊 = |𝐸| are the numbers of nodes and edges,
espectively. Let the degree 𝑘𝑖 of the node 𝑣𝑖 be the number of edges
ncident with the node and the average degree ⟨𝑘⟩ =

∑𝑁
𝑖=1 𝑘𝑖∕𝑁 .

Given the input network, we assume that the sampling network
𝐺𝑠 = ⟨𝑉𝑠, 𝐸𝑠⟩ is obtained through different graph sampling algorithms,
in which 𝑉𝑠 ⊆ 𝑉 is the set of sampling nodes, 𝐸𝑠 = {𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ), 𝑒𝑖𝑗 ∈
𝐸|𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑠} and the sampling fraction 𝛼 = |𝑉𝑠|∕|𝑉 |. That is, 𝐺𝑠 is
the induced subgraph of 𝐺 over the sampling nodes 𝑉𝑠. As shown in
Fig. 1 (a), only a fraction of a node’s neighbors may be selected for
2

Fig. 1. Incomplete sampling information. The sampling network induced from
sampling nodes (a) and the sampling nodes with a neighborhood (b). The sampling
nodes, neighbor nodes, and missing nodes are given in different colors, and the number
is the observed degree of nodes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

inclusion. On the other hand, we assume that sampling a node means
obtaining its neighborhood information. For example, we could obtain
the buddy list of one user in the network crawling, which is also the
essential condition of many sampling algorithms. Meanwhile, the IDs of
neighbors are difficult to obtain due to probing costs or accessibility.
Therefore, during the sampling process, only the real degree of sam-
pling nodes 𝐾𝑠 = {𝑘𝑖|𝑣𝑖 ∈ 𝑉𝑠} could be obtained (shown in Fig. 1
(b)). The main problem we focus on is how to develop an effective
intervention strategy according to the above sampling information.
This is also known in some studies as the network attack or network
immunization problem [32].

For the incomplete network obtained by the sampling algorithms in
the previous sections, how to formulate effective intervention strategies
is our main concern in this paper. We assume that we can intervene all
the nodes with limited sampling information, which means the removal
of all connected links of nodes. For the sampling nodes in 𝑉𝑠, we
could preferentially remove the most important nodes with the highest
degree. But for the missing nodes in 𝑉 = 𝑉 − 𝑉𝑠 without any attack
information, we could only remove them in random order.

We take the size of the largest connected components 𝑃∞ as the
measure of network connectivity and use the critical removal fraction
of nodes 𝑓𝑐 to characterize the effect of intervention. We record the
number of nodes 𝑁𝑟 removed up to the point that 𝑃∞ <

√

𝑁 , in
which the network is almost completely disconnected and its spreading
capability is severely limited. The threshold 𝑓𝑐 is calculated as 𝑓𝑐 =
𝑁𝑟∕𝑁 . A smaller 𝑓𝑐 implies more efficient intervention. In particular,
for the uncorrelated networks, 𝜅 ≡

⟨

𝑘2
⟩

∕⟨𝑘⟩ = 2 is often also used
s the general criterion, where

⟨

𝑘2
⟩

=
∑𝑁

𝑖=1 𝑘
2
𝑖 ∕𝑁 . The network is

ragmented when 𝜅 < 2. For the networks whose scale is larger than
000, we remove 1% of the total number of nodes at a time in the
xperiment.

.1. Network sampling algorithms

The sampling information in the above problems is greatly influ-
nced by the sampling algorithms. Classical network sampling tech-
iques could be classified as node sampling, edge sampling and
raversal-based sampling, in which we choose the simplest random
lgorithms [36].

Random node sampling (RNS): nodes in 𝑉𝑠 ⊆ 𝑉 are chosen indepen-
ently and uniformly at random. All edges among the sampling nodes
re then added to form the sampling network 𝐸𝑠 = {𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ), 𝑒𝑖𝑗 ∈

𝐸|𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑠}.
Random edge sampling (RES): we select nodes in pairs by randomly

sampling edges and including both endpoints. The sampling process
stops when the target fraction 𝜙 of nodes is collected. Furthermore, the
sampling network could be obtained by adding the other edges between
sampling edges through the graph induction process. The sampling
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Fig. 2. Three graph sampling algorithms. For the target network (a), the three
algorithms sample nodes by random node selection (b), random link selection (c) and
random walk (d), respectively.

method introduced as the graph induction process is also called totally
induced edge sampling [36].

The samples in the above two algorithms are uncorrelated, making
them suitable for theoretical analysis. However, we could not perform
them in most real applications due to different limitations, and traversal
based sampling (TBS) is more practical. TBS starts from a small starting
topology (such as a set of initial nodes) and expands the sample based
on current observations. This paper considers a simple random walk
sampling method, which is widely used for hidden populations and
better simulates the network crawling.

Random walk sampling (RWS): start from a random initial node 𝑣(0).
hen choose one of its neighboring nodes 𝑢 uniformly and randomly
nd let 𝑣(𝑖) = 𝑢 at step 𝑖. Repeat 𝑡 steps and until the expected fraction
of nodes is collected. The sampling network 𝐺𝑠 = ⟨𝑉𝑠, 𝐸𝑠⟩ consists

f 𝑉𝑠 = {𝑣(0), 𝑣(1),… , 𝑣(𝑡)} and 𝐸𝑠 = {𝑒𝑖|(𝑣(𝑖−1), 𝑣(𝑖)), 𝑖 = 1,… , 𝑡}. In
particular, the RWS is memoryless and one can revisit some vertices,
which make it appealing for theoretical analysis. Similarly, the graph-
induced process could be introduced to obtain the additional edges
between sampled nodes, and the overall process is also named induced
subgraph random walk sampling.

The diagrams of the above algorithms are given in Fig. 2. More
graph sampling methods can be found in the review articles [37,39].
According to the assumption of the last section, the main information
we used for forming the intervention strategy is the real degree of
sampling nodes 𝐾𝑠. Thus, what affects the effect of the intervention
strategy is the distribution of the real degree of sampling nodes and
the removing sequences of nodes in different areas (i.e., 𝑉𝑠 and 𝑉 ).
Before forming a intervention strategy, we could first estimate the
global degree distribution and average degree of the original network
according to the degree distribution of the sampling nodes, which could
help us better determine the removing sequence.

2.2. Network inference with sampling information

We consider the degree distribution 𝑝(𝑘) (𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥) of
network 𝐺, where 𝑘𝑚𝑖𝑛 is the minimum degree and 𝑘𝑚𝑎𝑥 is the maximum
degree. The mean degree ⟨𝑘⟩ could be calculated through ⟨𝑘⟩ =

∑𝑘𝑚𝑎𝑥
𝑘=1 𝑘⋅

𝑝(𝑘). Similarly, assuming that 𝑞(𝑘) is the degree distribution of the
sampling nodes, the degree distribution 𝑝(𝑘) and the average degree
⟨𝑘⟩ of the original network 𝐺 could be estimated by 𝑞(𝑘).
3

a

Fig. 3. Estimation of the average degree and the critical removal fraction under
the target intervention. (a–d) The average degree of sampling nodes (a) and the
missing nodes (b) varies with the sampling proportion 𝛼. (c–d) The estimate of the
average degree ⟨�̂�⟩ in BA networks with different sizes 𝑁 (c) and sampling proportions
𝛼 (d). The results in (a–d) are presented for three sampling algorithms in the BA
network with ⟨𝑘⟩ ≈ 8 (gray dashed lines). (e–f) The estimated critical removal fraction
�̂� under the target intervention in BA networks with different sizes 𝑁 (e) and 𝑚 (f).
he plus signs represent the real 𝑓𝑐 of the BA networks under target intervention.

Each line corresponds to an average over 100 independent realizations of the sampling
algorithms, and the error bars are displayed as shadows. The numbers of sampling
nodes in (c), (e) and (f) are both 500. We generated BA networks with 𝑚 = 4 in (a–e)
nd 𝑁 = 10000 in (f).

For the RNS, we could approximatively take 𝑝(𝑘) = 𝑞(𝑘) and obtain
n unbiased estimator for ⟨𝑘⟩

�̂�⟩ =
𝑘𝑚𝑎𝑥
∑

𝑘=1
𝑘 ⋅ 𝑞(𝑘), (1)

hich is also the average of the degrees of sampling nodes. However,
or RES and RWS, the nodes are sampled with a probability propor-
ional to their degree, and the algorithm is biased towards high degree
odes. Thus, 𝑝(𝑘) could be estimated as

�̂�(𝑘) =
1
𝑘 ⋅ 𝑞(𝑘)

∑𝑘𝑚𝑎𝑥
𝑘=1

1
𝑘 ⋅ 𝑞(𝑘)

. (2)

In addition, the average degree could be estimated as

⟨�̂�⟩ =
𝑘𝑚𝑎𝑥
∑

𝑘=1
𝑘 ⋅ �̂�(𝑘), (3)

hich could also be presented by the harmonic mean of the degrees of
he sampling nodes [39,40].

Notably, the above conclusion is theoretically valid when the net-
ork is infinitely large and degree uncorrelated. For a finite network,

he estimated effect would be affected by the network scale 𝑁 and
ampling proportion 𝛼. As shown in Fig. 3(a) and (b), we give the
verage degree ⟨𝑘⟩ of sampling nodes and missing nodes with different
ampling proportions, respectively. The results show that the ⟨𝑘⟩ of
ampling nodes in the RES and RWS algorithms decreases from a
igher value to the average degree of the network 𝐺. From Eqs. (1)
nd (3), we can obtain the estimate of the average degree through
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Fig. 4. Network intervention with sampling information. (a–c) The size of largest
connected components 𝑃∞ vs. the nodes removal fraction 𝜙, where the sampling
proportion 𝛼 = 0.4 (a), 0.6 (b) and 0.8 (c), respectively. (d) The critical removal
fraction 𝑓𝑐 vs. the sampling fraction 𝛼. Each point corresponds to an average over
100 independent realizations.

the degree distribution of sampling nodes. In Fig. 3(c) and (d), we
give the estimated results with a fixed sampling number in different
scale networks and different sampling proportions in the same network.
We found that the estimate accuracy in RES and RWS increases with
the network scale but decreases with the sampling proportion. On the
contrary, the estimated effect in RNS is more robust when there is a
larger sampling proportion. Meanwhile, we found that when 𝑁 > 213 =
8192, the sampling number is 500, and 𝛼 ≈ 2−4 = 0.0625, there are
good estimate effects in the three algorithms. Therefore, we take the
sampling proportion 𝛼 = 0.05 to estimate the degree distribution and
average degree in the following.

The networks in Fig. 3 are generated according to the Barabási–
Albert preferential attachment model (BA network) [1], in which the
network is grown by attaching new nodes each with 𝑚 edges that
are preferentially attached to existing nodes with a high degree. The
average degree of the network ⟨𝑘⟩ ≈ 2×𝑚 when 𝑁 is large. It has been
proven that the breakdown or immunization threshold of such networks
can be estimated by their average degree ⟨𝑘⟩ [41,42]. Similarly, we
could estimate the critical removal fraction 𝑓 𝑎

𝑐 of the BA network (𝜅 =
2) under the target intervention through sampling information by

𝑓 𝑎
𝑐 = exp(−8∕⟨�̂�⟩). (4)

The results in Fig. 3(e) and (f) show that we can better estimate the
𝑓𝑐 of BA networks under the target intervention, and the estimation
accuracy depends on the estimation accuracy of the average degree ⟨𝑘⟩.

3. Efficient network intervention with sampling information

3.1. Network intervention with sampling information

According to the analysis in the above sections, different network
sampling algorithms have different preferences for nodes with higher
degree values, which would have a large impact on the intervention’s
effectiveness with sampling information. Therefore, the simplest inter-
vention method is to remove the sampling nodes first in descending
order of the known degree and then remove the remaining missing
nodes randomly. We name it the incomplete sampling information
intervention (IC) strategy. In Fig. 4, we display the intervention exper-
iment’s results of the IC strategy with different sampling information
obtained from the RNS, RES, and RWS algorithms. Meanwhile, we in-
troduce random intervention (RI) and target intervention (TI) strategies
4

for comparison. RI and TI strategies remove nodes in random order
Fig. 5. The illustration of the cutoff degree-based method. The sampling nodes 𝑉𝑠
are obtained by RES algorithm with 𝛼 = 0.5. The nodes are divided into three parts
by the cutoff degree value 𝐾 and the purpose is to make the nodes in part 𝑖𝑖 less
important than the nodes in part 𝑖𝑖𝑖.

Fig. 6. The cutoff degree-based method for three sampling algorithms. For the
networks obtained from RNS (a), RES (b) and RWS (c), we give the nodes’ degrees
ordered by attack sequences in the cutoff degree-based method with different cutoff
degree values and the size of the largest connected components 𝑃∞ varying with nodes
removal fraction 𝜙. The dash–dot lines in each subgraph on the left present the place
of the critical removal fraction of nodes 𝑓𝑐 . The dotted lines represent the intervention
presenting the network intervention results without cutoff degree-based methods (IC).
The different cutoff degree values and their 𝑓𝑐 are also given in subgraphs on the left.
The sampling proportion 𝛼 = 0.6.

and the descending order of the actual degree and correspond to the
situation where the network information is entirely unknown (𝛼 = 0)
and known (𝛼 = 1), respectively.

An important characteristic of the BA network is that it is vulnerable
to target intervention and robust to random intervention. Therefore,
the preference of sampling nodes for high degree nodes is conducive
to making better intervention decisions. According to Fig. 4, the in-
complete information greatly impacts the attack’s effect. Especially for
RNS, the sampling information is not helpful for reducing the 𝑓𝑐 before
the proportion arrives at the critical removal fraction of RA, which was
fully discussed in Ref. [18]. For RES and RWS, the degree preference of
the sampling information makes the sampling nodes contain more hub
nodes. Thus, the intervention effect has some improvement. In addition,
result of RES is better than that of RWS due to the more independent
distribution of sampling nodes.
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Fig. 7. Intervention experiments in BA networks with different cutoff degree values. We offer the critical removal ratio 𝑓𝑐 as a function of the sampling fraction 𝛼 with
RNS, RES and RWS, in which the 𝐾 = �̂�𝑔 (a), �̂�𝑡 (b) and �̂�𝑟 (c), respectively. The results of the cutoff degree-based method based on the estimated average degree (CE) are given
in different colors and symbols. The solid and dashed lines in the same color represent the results without the cutoff degree (IC) and with the real cutoff degree (CR), respectively.
The shadow represents the improvement of CE over IC. The results of CE and CR in the three sampling algorithms are compared together in the fourth subgraph. In addition,
the gray dashed and dash–dot lines present the critical removal ratio 𝑓𝑐 of networks under random intervention (RI) and target intervention (TI), respectively. Each point or line
orresponds to an average of over 100 independent realizations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
.2. Cutoff degree-based method

Though the sampling algorithms have degree preference, there are
till many nodes with small degree values in the sampling nodes. The
C strategy can only adjust the removal sequence of sampling nodes.
n the extreme case, when removing all sampling nodes does still not
isintegrate the network, the adjustment of the removal order is mean-
ngless. The effect of intervention depends on the degree preference of
ampling algorithms. That is why the IC strategy underperformed with
smaller sampling proportion. Sorting all the 𝑁𝛼 sampling nodes in the
ecreasing order of degree, there exists a node with degree 𝐾 behind

which the nodes is less important than the missing nodes.
We name 𝐾 as the cutoff degree value and propose a cutoff degree-

based method for intervening in the network based on sampling infor-
mation. As shown in Fig. 5, we remove the sampling nodes 𝑉𝑠 and the

issing nodes 𝑉 in the following order:
(a) We remove the nodes in 𝑉𝑠 by the descending order of their

egree 𝐾𝑠 until reaching the first node whose degree is smaller than 𝐾
nodes in part 𝑖).

(b) We remove the nodes in 𝑉 (nodes in part 𝑖𝑖𝑖) randomly.
(c) We remove the rest of the nodes in 𝑉𝑠 (nodes in part 𝑖𝑖) by the

ecreasing degree order.
For the networks whose scale is larger than 1000, we similarly

emove 1% of the total number of nodes at a time and determine
hether the degree of a boundary node is smaller than 𝐾.

In this article, we consider three different cutoff degree values,
.e., the global average degree 𝑘𝑔 , the critical degree of the network
nder target intervention 𝑘𝑡 and the average degree of the remaining
odes 𝑘𝑟. Because the original network’s average degree can be esti-
ated through the degree distribution of the sampling nodes, the above

utoff degree values can be estimated by the sampling nodes.
Based on the estimated global average degree ⟨�̂�⟩ from Eqs. (1) or

3), we obtain

̂ 𝑔 = ⟨�̂�⟩. (5)

eanwhile, in the BA networks, we further combine Eq. (4) and obtain

̂ = 𝑚𝑎𝑥{𝑘|�̂� (𝑘) ≤ 1 − 𝑓 }, (6)
5

𝑡 𝑐 𝑐
Fig. 8. Different cutoff degree values in three sampling algorithms. With the
sampling information obtained by RNS (a), RES (b) and RWS (c), we give the critical
removal fraction 𝑓𝑐 and the estimated 𝐾 used in the cutoff degree-based method. The
dashed lines in the same color represent the results with the real cutoff degree (CR).
The results are obtained from the same experiments in Fig. 7. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

where �̂�𝑐 (𝑘) is the cumulative degree distribution obtained from �̂�(𝑘).
Moreover, introducing the average degree of sampling nodes ⟨𝑘⟩𝑠 and
the sampling proportion 𝛼, we can obtain

�̂�𝑟 =
⟨�̂�⟩𝑁 − ⟨�̂�⟩𝑠𝑁𝛼

=
⟨�̂�⟩ − ⟨𝑘⟩𝑠𝛼 . (7)
𝑁(1 − 𝛼) (1 − 𝛼)
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Fig. 9. Intervention experiments in real networks with 𝐾 = �̂�𝑔 . For each network in Table 1, we show the critical removal ratio 𝑓𝑐 as a function of the sampling fraction 𝛼 and
compare CE and CR in three sampling algorithms. The definitions of the symbols and colors are the same as in Fig. 7. In addition, the gray dash–dot lines represent the critical
removal ratio 𝑓𝑐 of networks under target intervention (TI). Each point or line corresponds to an average of 10 independent realizations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Intervention experiments in real networks with 𝐾 = �̂�𝑟. The other settings are the same as those in Fig. 9.
To further explore the effectiveness of the above three cutoff degree
values, for the BA network used in Fig. 4, we show the degree of nodes
according to the attack order with different 𝐾 in Fig. 6 and the change
in the size of the largest component with different remove orders. To
exclude the influence of estimate error, the cutoff degree values are
both calculated by the real average degree distribution 𝑝(𝑘) and the
average degree ⟨𝑘⟩ in this figure. To better compare the differences
in cutoff degree values, we keep the random order of nodes in 𝑉
unchanging but only change the place of the cutoff degree values in
the experiments.

In Fig. 6 we can see that the cutoff degree-based method could
effectively order the nodes with high degrees in 𝐾 before the nodes
with lower degrees in 𝑉𝑠 and then improve the attack effect. At the
same time, the effect of 𝑘𝑔 and 𝑘𝑟 is significantly better than that of 𝑘𝑡.

Furthermore, in the same BA network, we change the sampling
proportion 𝛼 and compare the critical removal ratio 𝑓 of applying the
6

𝑐

cutoff degree-based method or not in three sampling algorithms. For
each sampling algorithm, we remove the nodes with orders obtained
from incomplete information (IC) as well as the cutoff degree-based
methods based on the estimated degree distribution (CE) and real
degree distribution (CR). At last, we compare the results of the cut-
off degree-based methods in three sampling algorithms with different
cutoff degree values. As can be seen in Fig. 7, the cutoff degree-based
method can effectively improve the attack effect in the BA network
with different sampling proportions 𝛼. However, in RES and RWS,
the method fails to achieve the most effective effect due to the poor
estimation effect of the cutoff degree values �̂�𝑡 and �̂�𝑟.

To better compare the difference in cutoff degree values, in Fig. 8,
we present the intervention results with different 𝐾 as well as the
change in different cutoff degree values with the sampling proportion
𝛼. The results show that, in RNS, the cutoff degree values calculated

by sampling information (estimated values) are similar to those of real
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Fig. 11. Comparison of cutoff degree values �̂�𝑔 and �̂�𝑟 in real networks. For each network in Table 1, we give the critical removal fraction 𝑓𝑐 and the estimated 𝐾 used in
he cutoff degree-based method. The dashed lines in the same color represent the results with the real cutoff degree (CR). The results are obtained from the same experiments in
igs. 9 and 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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nformation (real values). In RES and RWS, the estimated values are
ignificantly lower than the real values, especially in �̂�𝑡 and �̂�𝑟. 𝑘𝑔 and
𝑟 have better effects than 𝑘𝑡 when the real degree distribution is used
o calculate the cutoff degree value, which is similar to the conclusion
n Fig. 6. However, compared with 𝑘𝑔 and �̂�𝑔 , there is a larger error
etween 𝑘𝑟 and �̂�𝑟. This makes the estimated cutoff degree values less
ffective than the true value, especially when the sampling proportion
is high. The above results also show that the 𝑘𝑡 based on the estimated

arget intervention threshold is not an effective cutoff degree value
nd the threshold of networks with other degree distributions is more
ifficult to estimate accurately through 𝑘𝑡. Therefore, 𝑘𝑔 and 𝑘𝑟 are
ainly used for cutoff degree-based methods in what follows.

.3. Experiments in real networks

In the previous sections, we mainly experimented in BA networks.
ue to the scale-free degree distribution, BA networks are robust
gainst random intervention but vulnerable to target intervention,
hich makes it easy to reflect the differences of attack ranking in the

ntervention effect. On the other hand, many systems taking the form
f networks in the real world are more complicated than synthetic
etworks. To further analyze the difference of sampling algorithms and
he selection of 𝐾 in the cutoff degree-based method, we experiment
n more real networks in this section. The information on the real
etworks is shown in Table 1. Specifically, we present the average
lustering coefficient and assortativity coefficient [43]. The data can
e obtained from the website SNAP [44].

Similar to Fig. 7, we give the results of network intervention in real
etworks for 𝐾 = �̂�𝑔 and �̂�𝑟 in Figs. 9 and 10, respectively. We can
ee that, in most real networks, the effect of intervention under partial
ampling information obtained by RES and RWS can reach that of target
nterventions (dash–dot lines) before the sampling proportion 𝛼 arrives
t a high value.

Meanwhile, the cutoff degree-based method can also effectively
ake advantage of sampling information to improve the intervention
ffect. Unlike the error caused by the estimated average degree in
he BA network, in most real networks, the results obtained by the
7

a

Table 1
The characteristics of the real networks analyzed in this paper.

Name 𝑁 𝑀 ⟨𝑘⟩ 𝐶 𝐴𝐶

Crime 829 1473 3.554 0.006 −0.165
HI-II-14 4165 13087 6.284 0.044 −0.202
Authors 21363 91286 8.546 0.642 0.125
Digg 29652 84781 5.718 0.005 0.003
Enron 33696 180811 10.732 0.509 −0.116
Gnutella31 62561 147878 4.727 0.005 −0.093

For each network, we show its name, the number of nodes (N) and edges (M), the
average degree, the average clustering coefficient 𝐶, and the assortativity coefficient
𝐴𝐶.

estimated average degree (CE) are close to the results obtained by the
real average degree (CR). Especially for RES and RWS, the attack effect
is mainly determined by the degree distribution of the sampling nodes,
and the cutoff degree-based method has little effect. That is because
the main ‘‘hub’’ nodes have been sampled due to the algorithms’ degree
preference. Moreover, the results of RES are also better than those of
RWS due to the independent distribution of the sampling nodes, which
is similar to the results in Fig. 4.

To further analyze the influence of cutoff degree values, we compare
the results of cutoff degree-methods for 𝐾 = �̂�𝑔 and �̂�𝑟 in Fig. 11
nd give the variation in estimated cutoff degree values with sampling
roportion 𝛼. As opposed to the results in BA networks, in most real
etworks, the effect of real values 𝑘𝑔 is better than that of 𝑘𝑟. At the
ame time, the estimated error of �̂�𝑟 is larger than that of �̂�𝑔 . Therefore,
n most cases, it is better to use �̂�𝑔 as the cutoff degree value in network
ntervention.

. Conclusion and discussion

Network intervention aims to destroy network function, where in-
omplete network information will greatly affect the effect. Considering
he access to network information, we study network intervention with
ampling information in this paper. Based on three classical sampling
lgorithms, i.e., random node sampling, random edge sampling and
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random walking sampling, we analyzed the degree preferences of al-
gorithms and their influence on intervention according to incomplete
information. Furthermore, we propose the cutoff degree-based method,
which could effectively use the degree distribution of sampling nodes
and improve the intervention effect by estimating the average degree of
the original network. The selection of different cutoff degree values and
their effects are discussed in models and natural network experiments.

As opposed to the other network intervention research which mainly
focuses on random information loss, we consider how the network
information is obtained in this paper. We found that the degree dis-
tribution of known nodes determines the intervention effect. On the
other hand, we synthesize the global sampling information and avoid
the repeated acquisition of nodes’ information. The results indicate
that we could obtain the approximate target intervention effect by
partial sampling information when the appropriate cutoff-degree value
is estimated through the sampling information.

It is worth mentioning that we make some ideal assumptions, such
as the known neighborhood and real degree of nodes. Whereas, in this
paper, we did not consider the network topology between sampling
nodes during the process of developing the intervention strategy. More
scenarios of incomplete sampling information could be expanded in the
future. In addition, most of the results in this paper are obtained from
the simulation experiments in representative networks. We could also
analyze the intervention effect in different sampling algorithms based
on percolation theory for networks with specific degree distributions.
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